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Abstract

We present a new fast approach for surface segmentation
of thin structures, like vessels and vascular trees, based on
Fast Marching and Level Sets methods. Fast Marching al-
lows segmentation of tubular structures in¤ating a “long
balloon” from a user given single point. However, when
the tubular shape is rather long, the front propagation may
blow up through the boundary of the desired shape close to
the starting point. Our contribution is focused on a way to
go on front propagation only on the actually moving front
and freezing other points. We demonstrate the ability to
build a fast and accurate segmentation for those tubular and
tree structures. We also develop a useful stopping criterion
for the causal front propagation. We illustrate our algo-
rithms by applications on the segmentation of vessels in 3D
medical images.

1 Introduction

We are interested in this paper in segmentation of tubu-
lar surfaces from 3D images, motivated by medical ap-
plications like vessels and vascular tree. These surfaces
can therefore have several branches. Much work has been
done on surface segmentation since the introduction of de-
formable models (see references in [10]). The recent trend
of deformable surfaces makes use of Level Sets methods
(for example [1]). A major drawback of level sets methods
is their huge computation time, even when using a narrow
band. Fast Marching, introduced in [11], allows fast sur-
face segmentation when the evolution is always outwards
like a balloon [2, 9]. Using the Fast-Marching algorithm to
propagate a wave front inside a colon CT scanner, we can
extract the surface of the colon, starting from an initial seed
point, using the Fast-Marching as a region-growing method
[4]. We have developed an algorithm that can be the basis of
this kind of tubular shape extraction object: a technique to
evolve a front inside an object of interest and compute at the
same time the geodesic distance to the starting point inside
the object. This distance can be used to stop the front propa-
gation inside the desired object. The result of this technique
is shown in £gure 1. Top image is the 3D CT scanner, and
bottom images show some steps of the front propagation in

the 3D dataset.
However, classical segmentation problems do not pro-

vide an excellent contrast like the air-£lled colon on a CT
scanner, and the propagation cannot stick to the object walls
for long and thin objects. We show in this article how the
Fast Marching surface segmentation, which is not tuned for
this kind of thin and long objects, can be speci£cally opti-
mized for this target.

2 Fast-Marching and Surface Segmentation

Considering a 3D surface Γ moving under speed F in
its normal direction, in the Level-Sets formulation, it is em-
bedded as the zero level set of a function φ de£ned in the
3D image space. This leads to evolution equation

φt + F |∇φ| = 0. (1)

In the case of Γ moving with a speed F > 0, it leads to a
new equation that determines the evolution of the surface or
arrival time T (x), also called action (see [11] for details):

|∇T | =
1

F
= P. (2)

This Eikonal equation (2) has been used for surface extrac-
tion in [9]. Discretized with an up-wind scheme, it is then
solved using Fast-Marching (table 1), given an initial start-
ing point p0. In practice the front is propagated until a £xed
time is reached. Figure 1 shows iterations of this front prop-
agation in a 3D image with potential P de£ned in order
to segment the colon. Evolution is stopped when a given
geodesic length has been traveled by the front [4].

3 Propagation Freezing for Thin Structures

Freezing a voxel during front propagation is to consider
that it has reached the boundary of the structure. When the
front propagates in a thin structure, there is only a small part
of the front, which we could call the “head” of the front,
that really moves. Most of the front is located close to the
boundary of the structure and moves very slowly. For exam-
ple voxels that are close to the starting point, the “tail” of the
front, are moving very slowly. However, since the structure



Figure 1. Segmenting the colon volume with sim-
ple front propagation

Figure 2. 3D contrast enhanced MR image of the
aorta and front propagation

may be very long, in order for the “head” voxels to reach
the end of the structure, the “tail” voxels may ¤ow out of
the boundary since their speed is always positive, and inte-
grated over a long time. This is illustrated in the example
of £gure 2. If we apply fast marching in the dataset shown
in £gure 2-top, with a potential based on the gray level with
contrast enhancement, the corresponding wave propagation
looks like £gure 2-bottom. The front ¤oods outside the ob-
ject and does not give a good segmentation.

For these reasons, it is of no use to make some voxels
participate in the computation of the arrival time in Eikonal
equation. We thus set their speed to zero, which we call
Freezing. First step is to design the appropriate criterion for
selecting voxels of the front which need Freezing.

A synthetic example of a tree structure is shown in £g-
ure 3. In this case, setting an initial seed point at the left cor-
ner point, we would like to extract in a very fast process the
multiple branches of the structures. Figure 3-right shows
the result of the classical front propagation technique with
the Fast-Marching coupled with a maximum geodesic path

Algorithm for 3D Fast Marching

• De£nitions:
– Alive set: grid points at which the values of T

have been reached and will not be changed;
– Trial set: next grid points (6-connexity neigh-

bors) to be examined. An estimate T of T has
been computed using discretized Equation (2)
from Alive points only (i.e. from T );

– Far set: all other grid points, there is not yet an
estimate for T ;

• Initialization:
– Alive set: start point p0, T (p0) = T (p0) = 0;
– Trial set: reduced to the six neighbors p of p0

with initial value T (p) = P̃ (p) (T (p) = ∞);
– Far set: all other grid points, with T = T = ∞;

• Loop:
– Let pmin be the Trial point with smallest T ;
– Move it from the Trial to the Alive set;
– For each neighbor p of pmin:

∗ If p is Far , add it to the Trial set;
∗ If p is Trial , update Tp.

Table 1. Fast Marching algorithm

Figure 3. Synthetic test problem

length stopping criterion of 300, computed according to the
method described in [6]. The action map T displayed indi-
cates clearly that the domain visited is a whole “blob-like”
structure where the underlying tubular shape is somehow
lost. It emphasizes the drawback of the method in this case,
without a clear constraint on the domain of points visited.

3.1 Using Weighted Distance for Freezing

The geodesic weighted distance inside the object be-
tween a point and the starting point can be computed in the
fast marching process without much extra cost as shown for
a different application in [6, 4]. This is the Euclidean length
of the minimal path (according to P , see [3]) that joins the
points. It seems “natural” to use this distanceD(v) between
a voxel v and the starting point, or relatively to the most
far propagating part of the front, since this notion is com-
pletely embedded in the topology of the object we are trying
to extract: the section of a tube-shaped object must be small
with respect to its length. We must discriminate the points
of the front that are near the initializing seed point while
other parts of the front are already far. It will prevent from
¤ooding in non-desired areas of the data.
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We can £x several criteria for the Freezing based on
the distance. Knowing the current maximum geodesic path
length dmax in the front propagation process we can decide
that a voxel v of the propagating front (i.e. Trial voxels)
should be removed from the front (i.e. set as Alive voxel):

• if D(v) < dmax/α, with α ≥ 1 user-de£ned; or

• if D(v) < max (dmax− d̃, 0), with d̃ > 0 chosen.

The geodesic distance to the starting point is a measure
which contains information about the geometry of the sur-
face extracted, and in particular its length. A 2D example on
the synthetic test is shown in £gure 4. The domain visited
by our algorithm is slightly smaller than without freezing
(£gure 3-right) and this domain shortens with the distance
criterion, when we compare left and middle images in £g-
ure 4 which are action maps with distance criterion of re-
spectively 100 and 50. The £gure 4-right is a zoom on the
freezing map which clearly demonstrates that the Freezing
principle discriminates the points located far from the prop-
agating fronts (frozen parts are represented in white).

Figure 4. Distance criterion for Freezing

3.2 Algorithm for the Freezing

At each time step we insert our visited points both in the
classical action related heap, and in another min-heap data-
structure where the ordering key is the distance to the seed
point, which means that the element at the top of the heap
will still be the point that is the closest Trial point to the
starting point. At each iteration, we are able to remove all
the points whose keys are lower than this criterion, starting
from the minimum element in the binary heap.

In the following is detailed an algorithmic implementa-
tion of the Freezing with : Starting point p0 located at the
root of the tree structure; action map T , one min-heap struc-
ture HT and a penalty image P which will drive the front
propagation; distance map D to compute the minimal path
Euclidean length [6, 4]; min-heap data structureHD, where
the ordering key for any point p is the value of D(p); a
counter dmax, distances d̃, dstop.
Initialization

• setting T (p0) = D(p0) = 0 and storing the seed point p0

in both min-heap structures HT and HD;
• dmax = 0, d̃ and dstop are user de£ned.

Loop: at each iteration
• Let pmin be the Trial point with the smallest action T ;

• Fast-Marching algorithm of Table 1, updating min-heaps
HT ,HD with the new action values for T ,D computed;

• take dmax = max (dmax,D(pmin));
• consider qmin, the root of HD .

While D(qmin) < max (dmax − d̃, 0) do
– set D(qmin) = T (qmin) = ∞;
– set qmin in Alive set and delete it in both HD and HT ;

• if dmax > dstop, exit the loop.

This heuristic is to discriminate the parts of the front
that are propagating slowly, by recording the maximum dis-
tance which has been traveled, and compare it to the dis-
tance which has been traveled by these parts. If the ratio be-
tween those two distances is superior to a given threshold,
we ”freeze” those parts by setting there speed arti£cially to
zero. It enables to stay inside the object when it is long and
thin like a tubular structure, as shown in £gure 4.

3.3 Illustration on Vascular Tree Segmentation

The method explained previously is very useful when it
is used for vascular segmentation. Segmentation is there-
fore performed in a very fast manner by just setting a seed
point at the top of the tree hierarchy. Figure 5 displays re-
sults of this method on three different objects. Figure 5-left

Figure 5. Segmentation of several tubular objects
with the Freezing algorithm

shows the new result obtained on the dataset of £gure 2.
The distance threshold is a parameter which is not very

sensitive: we generally take a value related to the a priori di-
mensions of the object. This threshold must be larger than
the assumed maximum section of the object. It will approx-
imately represent the volume of points bounded by the con-
nected envelope of the front voxels that are not frozen.

3.4 Stopping criterion

Having designed an adequate criterion for Freezing the
unwanted parts of the front that could lead to “¤ooding”
of the evolving wave in other parts of the image, we now
explain our strategy to stop automatically the propagation.

The Freezing process will provide a criterion which is
independent of the number of different branches to recover.
If we plot the maximum distance dmax of section 3.2, as
a function of iterations while propagating the front, we ob-
serve the following pro£le shown in £gure 6. We clearly
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see that this distance increases linearly until a big decrease
of the slope appears. It is important to notice that this shock

Figure 6. Using Distance for Stopping propaga-
tion in the Aorta

indicates when the front ¤ows out of the object at “heads”
of the front. We decide to stop front propagation at this par-
ticular time. During the £rst part of the plot, the function is
quasi-linear. The slope is directly related to the section area
of the tubular object. By de£nition of Fast Marching, the
number of iterations is equal to the number of voxels that
are alive and close to the volume of the region inside the
front. It means that passing through a certain length in the
aorta implies to visit a number of voxels proportional to the
length. This is the case in general for tubular shapes.

Let us assume that the global section of our aorta is con-
stant in our dataset. This is approximately true in large
parts, but becomes a wrong assumption in the very thin parts
of the vessels and arteries. But we can assume that the front
propagates at the same speed inside the object. Therefore,
the number of voxels visited is proportional to the section
area. Then the slope collapse can be easily detected using a
simple threshold on the slope, depending on the object we
want to extract. Even if there are aneurysms in the data set,
and even if the mean section of the object increases with the
depth, we can assume that we do not want to extract an ob-
ject which is twice the maximum section. We could then de-
rive a criterion on the maximum section of the object Smax

which gives a related value of minimal slope. Recording
the £rst iteration where the slope decreases, it gives us the
maximum distance where we must stop propagation.

3.5 Discussion

What is the gain of our approach? Toward level-sets
implementations of tubular shape extraction, as in [12, 8],
solving the Eikonal equation in o(n log(n)) is much faster

than any time-dependent scheme, since this is the station-
ary case of Hamilton-Jacobi equation (See [11] for details).
The freezing algorithm reduces the number of points visited
to a small portion of the image, leading to accurate segmen-
tation in 10 seconds, for the MR datasets shown in £gure 2,
on a commercial computer.

3.6 Conclusion

Concerning tree tracking application, main improve-
ments brought by this method are to accelerate the com-
putations, by visiting a very small number of voxels during
propagation, and to segment thin tubular structures, there-
fore enabling the centering of trajectories inside those tubu-
lar structures. Further work will concern the extraction
of the multiple trajectories, together with the segmentation
step, in a single process, for visualization and quanti£ca-
tion of pathologies. Those trajectories can be the input to
an endoscopic tool, as done in [5].
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